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Benjiro 


ples and Standards for School Mathema
beyond manipulating symbols. In the Standards,
ng patterns, relations, and functions; .

3 and analyzing mathematical situations and structures ust

A

matical models to represent and understand quantitative relationships ar
ge in various contexts :

it may include variables and expressions, algebraic thinking has a broader and

cony than the term algebra. The term algebraic thinking can be defined as “the use

f a v riety of representations that handle quantitative situations in a relational way.

‘definition of algebraic thiniking is “the ability to operate on an unknown quantity as if

tity was known, in contrast to arithmetic thinking which involves operations on known

‘ n . The' algebraic thinking could be considered to be the “capacity to represent
juantitative situations so that relations among variables become apparent”. These definitions are i

 similar, and we use them to- guide our own use of the term “algebraic thinking” (Steele & o

hanning, 2004: 65). Algebraic thinking consists of more than just learning how to solve for the

ables x and y; it helps students think about mathematics at an abstract level, and provides them
a way to reason about real-life problems. You can explore three components of algebraic i

Kking: (1) making generalizations, (2) conceptions about the equals sign (equality), and (3)

inking about unknown quantities.

" In this course, we will consider three distinct aspects of algebraic thinking that can be

tified in elementary mathematics instruction: generalization, concepts of equality, and thinking

unknown quantities. These three components of algebraic thinking provide a useful framework

t recognizing whether students in grades 3 through 5 are thinking algebraically, and for determining

thet a problem can be viewed algebraically.

.. Generalisation 4
" ninent in most definitions of algebra is the notion of “patterns.” "T'he ability to discover and -
cate mathematical patterns is important throughout mathematics. The authors of the |
and Standards for School Mathematics talk exiensively about the important role that 3
ding patterns plays in algebraic thinking: In grades 3-5, students should investigate
| and geometric patterns and express them mathematically in words or symbols. They
yze the structure of the pattern and how it grows or changes, organize this informs f”: ‘
y, and use their analysis to develop generalizations about the mathematical
1 the pattern. Young students can have meaningful experiences with generalizing
even though they do not usually express their mathematical ideas using




e

¢d the property },. ) /
not. Both of these observations are exam
| property onto a whole category of nu
me time for students to develop strategies for justifyir
“INg that there is a pattern in a number sequence, and then w
o ambers get larger. Describing the pattern is the next step, followed
students will arrive at 5 generalized understanding of the pattern; they will
=M€ a specific number (or term) is part of a pattern without calculating each cor
example, given the pattern 1, 3,5, 7,9, ..., above, students will be able to determm_xe‘ L
u such as 381 is part of the pattern because it is an odd number, and will not need to wmqﬁug 3
- ©ach odd number from 1 to 381 to be conyinced of this fact. In upper elementary school, most
4 ﬂudents will be ready to work on proving statements such as “adding 2 to an odd number produo?ﬁ»f
- another odd number,” but their ideas about proof will continue to evolve as they expand upon them in
~ senior high svhools. From 4 formal algebraic perspective, all four statements above follow from the: i
J 1" -~ fact that all odd numbers are of the form 2n+1, but students can make and test conjectures long beforg- o |
B they ever see such an expression. It is important to keep in mind that as studgnts propo§e_.§
~ generalizations such as those above, they may be basing their claims on only one ar IWo INSIANCESIORE
pattern. Mathematically this is not enough evidence to determine whether ‘a pattern exists. "In
observation 3 above, for example, a student may have noticed that adding 1 +2 = 3 (adding 2 to an
odd number produced another odd number), and adding 3 + 2 = §, also an odd number. However, she

may not have investigated any numbers beyond those. It is important for clementary students to
learn that forming generalizations from only a few instances can lead to inaccurate conclusions,
One example of this can be seen in students’ solutions to the “Frog in the Well”, A frog
climbs 3feet in the first hour and 2 feet for each subsequent 2hours. How long will it take the frog to
reach a height of 10-foot well?

The students try to use generalization to solve this problem, and figure that the frog climbs 2
feet total for each 2-hour period because he climbs up three feet in the first hour
the second hour. Using this generalization, they come to the conclusion that
hours to reach the top of a 10-foot well. However, while the rel
hour period, the ninth hour occurs in the middle of a 2- hour per
the top of the well and climbs out, and consequently does not “s]

a generalization that is true in most cases, they have neglected to notice that their current problem is

an exception to the general rule of up three, down two. In the end, their understanding of the
- relationship actually misleads them into solving the problem incorrectly, :

Proof of the Pythagorean Theorem using Algebra |

and slips down one in
it will take a frog 10
ationship holds in general for each 2-
iod. During this hour the frog reaches
ide down.” While students have made

* We can show that a® + b’ = ¢’ using Algebra

- Take a look at this diagram, it has that "abc" triangle in it (four of them actually);
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St
v areas of all the smaller picces:
er (tilted) square has an area of: ¢

our triangles has an area of:%ab

| four of them togethef is:4."%ab =2ab

g up the tilted square and the 4 triangles gives: A = ¢’ + 2ab
reas Must Be Equal
“‘ ' . i » i
1 ared of the large square is equal to the area of the tilted square
itten as: ;

and the 4 triangles. This can be

 (akb)(atb) = ¢+ 2ab

~ NOW

et us rearrange this to see if we can get the pythagoras theorem:
Start with:(at+b)(a+b) = ¢+ 2ab
Expand (a+b)(a+b)

a2+ 2ab +b? = ¢* + 2ab

. 5Ubtract“2ab" from both sides: a’ + b = ¢’

,

!-...

t’ ‘Proving that 1+2+3+...tn is n(n+1)/2

~ We give three proofs here that the n-th Triangular number, 1+2-+3+..4n is n(n+1)/2. The first is a
~ visual one involving only the formula for the area of a rectangle. This is followed by two proofs using
bra. The first uses "..." notation and the second introduces you to the Sigma notation which makes

oof more precise.

al proof that 142+3+...+n = n(n+1)/2 i
visualize the sum 1+2+3+..+n as a triangle of dots. Numbers which have such a pattern af

Wled Triangle (or triangular) numbers, written T(n), the sum of the integers from 1 ton:

EIRSIACRG Y4 =)
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.‘ ' ; @ B samo number of rows (4) but hﬁ#"ﬁ? X1l
21¢ is ‘ by 5 ‘

e contains 4x5=20 balls ¥
" Dut we took two copies of T(4) to get this ily check. - \!
~* 50 we must have 20/2 - 10 balls in T(4), which we can easily ¢ n{ A

-

ol . R

S visual proof applies to any size of triangle number.

" Hereitis again on T(5):

‘ e T e Ve
- = 441 2:::~:
€06 +0ee = 1ttt
28289 2’“ CLLeet

S0 T(5) is half of a rectangle of dots 5 tall and 6 wide, i.e. half of 30 dots, so T(5)=15.

Here's how a mathematician might write out the above proof using algebra:
T(n)+T(n)=1+ 2+ 3+ Wt (m-1)+ N b
T'wo copies, one red and 1}
e . oy 0s : 'n 0 .Ly()plcrs one red and the other, !

reversed, in green

+ +n- + n- -1 +2 SR : '
J(rl n) Srz n-1) 9 n-2) Srn ) (n+ 1) pair off the terms, a.red with agre

=(n+l)+ (ntl])+ (n+1)+
2T(n)=n(n+]) | i
T(n) = n (n+1) /2 e

vt () + (nt1) Al the n pair-sums are~equal' t'O..:

Using the Sigma notation
Some people regard the ** as too vague and want a more precise alter

summing a series, the sigma notation is used. Sigma is the na
"s", written as  (like an M on its side) as a capital letter and
ver case. In this case, the "s" stands for "sum"
bol for integration - another kind of sum).

native. For this reason, in
ne of the greek letter for the En
(like a small b that's fallen over)
- (A tall curly form of § gives the mathematical
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i HI‘-&HIF@.
ten in many ohc QWAYS, 12 § S
ﬂﬂ“““oﬂ“mbers (13-9)2 where this nmm ?‘WM

3

*’sum of the square numbers (i+11)
. ‘istlmelgoes from -1to 1 (i.e.i=-1,0and 1)

n
Here is T(n) which is [+2+3+...+n, this time omitting the second use of the LT
i above the sigma: 1= T(n)
: =1

5"'\' % 1=n
‘and this time, we have T(n) but written backwards: et
*‘n+ (‘n 1) #...3.+ 2+ 1 where the i" term is now n+1-i for i from 1 to n: (IO S
s il
ﬁ!;..."":.'
BEinally, note that if all the terms are independent of the variable, for =7

Sinstance if there is no 7 in the formula but the variable below the sigma is i,
then all the ter ms are consmm Ihc number ;/ rerms will bc gi iven b\ lhc

I
1
W

o |

L
(98]
*
(5}
i

b
o

i=ni + i=n (n+1-i) Two copies, onc red and the other, reversed, in green

(m+T(n) =

i~
LS RS

Y
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has shown that many elemen

on, or )
he left of the equals 9',8?‘ (Falkner, Levi, &

students would

er the sum of the two addends to the | e
m, regardless of their placement relative 10 thf o lementary
nsequently, given the problem 5 + 24 = 713," mos er)c'l‘h » issue resides in the meag
issing number was either 29 or 44. What’s going on h‘-':c' '>‘?thc «* can be thought of
ats assign to the “=" sign. In the case of the problem g = .rpretation in this proble
- result of the previous computation.” That Is 4 sufficient inte p 4 differently ¥ e noll
. in the example “S + 24 = ? + 15, the equals sign must be '”“‘rpfs“‘: 2‘4., and 9 + 15 No
tement of equivalence between two quantities, in this case betw§€n) e s ol iS” “
nlwer that the ? must be replaced by something other than 29, since 5 o < =
ot equivalent. Understanding that the sign “=" requires that one ’.”Ie of ..f,'e et':f : h?"
alent to the other is a basic tenet of algebra. Students will be st.rc'etchmg their algebraic thinki
skills if they see a variety of problems with unknowns in different positions, such as:
4 +7=17+2 '
B e 2+15=12+32 ~'
B3 +24=50+7 . .
" (Note that the 3rd problem has a negative integer as a value for ?, which may or may not be
o J appropriate for your students.)
~ Unknown quantity v
 Besides the word “variable,” “unknown” is one of the words most frequently associated
~ with algebra. Along with this concept comes the idea that the “unknown” will eventually become
~ “known;” this is what solving equations is usually about. But it’s possible (and important)
dents to work with expressions that include a variable that remains unknown. Most number
ks of the form, “choose a number, multiply it by 3, add 6, divide by 3, subtract 2 and tell me
number — and I’ll tell you your original number,” can be expressed algebraically without
to use a specific number. The algebraic component is that et
a specific one for which we have to solve,
example of a problem with an unknown

ate for students in grades 3 through 5

the trick works for all nu OCr!

quantity that remains unknown. This pro bler
Suppose Abena has some number of pi

Scanned by CamsScanner



n two quantities (here, whether Abcna or Ama has more
v the original amount is acted upon.
r formal algebra
nces with all three kmds of a\gebnuc lhmkmg tasks in

sa sign reqmrmg them to compute somei
' may now be ked to

Scanned by CamScanner



}i‘ o “.”'" “ ;‘._ X 1 .7 ser
s specify a set by specifying defining properties of the mem

KX}

n integer} . In the case
{x: x is an even integer}.

a4
1

ere are three main ways to specify a set:

- L. bylisting all its members (list notation)
2. by stating a property of its elements (predicate notation); :
3. by defining a set of rules which generates (defines) its members (recursive rules)
List notation |
.
The first way is suitable only for finite sets. In this case we list names of elements of a set, separate
them by commas and enclose them in braces: Examples: {1, 12, 45}, {George Washington, Bill

Clinton}, {a,b,d,m}. “Three-dot abbreviation”: {1,2, ..., 100}. {1,2,3,4,...} — this is not a real list :

notation, it is not a finite list, but it’s common practice as long as the continuation is clear. Note that
veral times. {1, 12, %

we do not care about the order of elements of the list, and elements can be listed se
45}, {12, 1, 45,1} and {45,12, 45,1} are different representations of the same set (see below the
|

notion of identity of sets).

Predicate notation

Example: {x:x is a natural number and x < 8} Reading: “the set of all x such that x is a natural number s

and is less than 8” So the second part of this notation is a

“Russell’s paradox”) -- see the historical 1
on the surface like a predicate can actually be considered to be 4 good defining cond
i cond

ions — type theory, other solutions; we won’t 80 into them
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*A X €B. For cxample, {0, 2, 4} = x| x is an even na

o
‘ S
C . e -
1 of identity follows that there exists only one empty set; its ide
o {hl absence of members. Note that empty list notation {} is not usually
» WE have a special symbol @ for it. The number of clements in a set A is ealle

o 3 s . . s > V\“
of A written|A|. The cardinality of a finite set is 2 natural number. Infinite sets also have
but they are not natural numbers “

e Way we arc using .) Both signs can be negated using the slash / through the sign. LExamples:
. {ab} € {d,a,b,c} and {a,b} c {d,a,b,c}, {ab} S {a,b}, but {a,b} ¢ {a.b}. Note that the cmpty setis a
Bsubset ol every set. @ € A for every set A, Why? Be careful about the difference helween “member

- of” and “subsct of™.
~ Power sets
R

1 libl'he set of all subsets of a set A is called the power set of A and denoted as @(A) or sometimes as 2A .
.,_-,_; example, if A = {a,b}, po(A) = {@, {a}, {b}, {a,b}}. From the cxample above: a € A; {a} € A:
AL EP(A) DS A; 0 & A; 0 € p(A), @ S (A). Pay close attention to the definitions and it should
me out all right. But if you don’t pay close attention to the definitions, it’s casy to make mistakes.
€ sure you understand thesc examples before you try it. (But do try; and if you don’t get
hing right the first time, we give you a chance to redo it.) 1.6. Operations on sets: union,
tion. We define several operations on sets. Let A and B be arbitrary sets. The union of A and
en A U B, is the set whose elements are just the elements of A or B or of both. In the predicate
the definition is A U B =def { x: x € A or x € B} Examples. Let K = {a,b}, L. = {c,d} and M
thenK U L = {a,b,c,d} KUM= {a,b,d} LUM = {bc,d}

N
v
|

M=KuUu((LuM)={abcd) KUK=KKU®=0UK=K  {ab}. There is a nice
isually representing sets and set-theoretic operations, called Venn diagrams. Lach set is
le and its members represented by points within it. The diagrams for two arbi

" Scanned by CamScanner
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r a relation, but not all relations are functions.

X may assume are called the domain of the function. We say that f:‘ |
hich the function is defined. In the function y= 2x+ 3, the doma;;n ays
humbers. x could be any real number. Or, as in Example 1 below, the domain
rily restricted. . i
: There is one case however in which the domain must be restricted: A denominator ‘
0. In this function, 1
l‘ by
ey —2° ‘
~ xmay not take the value 2. For, division by 0 is an excluded operation.

Ly 4

Once the domain has been defined, then the values of y that correspond to the values
of x are called the range. Thus if 5 is a value in the domain of y = 2x + 3, then

q
s
-t

B8 =(2°5)+3) isthe corresponding value in the range.

By the value of the function we mean the value of y. And so when x = 5. then we say that ‘,

i the value of the function y =2x + 3, is 13. The range is composed of the values of the function, It =

LS is customary to call x the independent variable because we are given, or we must choose, the value 8

- of x first. y is then called the dependent variable because its value will depend on the value ofx. = =
H‘ '?

Example 1. Let the domain of a function be this set of values:

A= {0, 1, 2, -2} and let the variable x assume each o
the value of x be the following:

ne. Let the rule that relates the value of y toliz'
4 A ,....y'=x2+1-
: :a) Write the set of ordered pairs (x, y) which "represents" S

this function. Ex
Answer. {(0,1),(1,2),(2,5), (-2, 5)}
~ Thatis, whenx=0, theny=0>+1 =,
~ Whenx=1,theny=12+1=2. Andso on,
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, s of the dependent variable, wh
\ction? (Consider that the values of x* are
lues of that function as mem'bers of an ordered pair.
For example, (1, 3), (2, 12), (3,27)

Functional notation

ont of th,e function Say that we are considering two functions -- two rules
yiy=x+1 and y=>5x.

will be convenient to give each of them a name. Let us call the function -- the rule ==

1 by the name "/" and let us call y = 5x by the name "g." We will write the following:
¥+ 1 and g(x) = 5x.
~ We read this,
equals X +1 and gofxequals 5x."
‘The parentheses in /(x) (“fofx") do not mean multiplication. They are part ol what 18
wnctional notation. fis the name of the function and whatever appears within the
eses is called the argument of the function. It is upon the argument that the function
[fwill "operate.”
Thus, the function / has been defined as follows:

1.

, that is how it will operate on any
function. We could illustate it as

Scanned by CamScanner



1) are the of the functional 1
~ m::: parentheses, which here indicate mnlﬁpﬁ ,

ead each symbol.
:a:r“ X"

b) g(x) "gofx"

e d) g=1) "gof-1"

‘ _-‘ﬂxz =D vrorx -1 ) fg(x)) "fof g of x"
Problem Let f{x) =x’ — 1. Evaluate the following.

a) A1) 1’-1=0 b) ~2) 3

¢) A2/3) -5/9 d) A= 7/5) 24125
Problem Let g(x)=2 —x. Evaluate the following.

a) g(0) 2 b) g-1) 3

c) g(6) —4 d) g(-4) 6
Problem Lety=f{x)=1- x’. What is the value of the function when '

a) x=0. y=1 ) x=-1. y=) p
d) x=-q. }’=1+q3

) 2 .
,,L'et Ax) = 4x". Write what results when foperates on each argument

Scanned by CamScanner



h 4
quotient. Calculating and simplifying

I

Newton quotient or the difference

in differential calculus.

function f(x), determine the

difference quotient in @ simplified form.

1) _ 220+ 1-2x—1
- I

h
h
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F 4 T (xthx

In Line 1) we added the fractions in the numerator of the complex fractlo: .
= ln Line 2) we removed the parentheses in the numerator, and multiplied by the reei D |
e denominator,
In Line 3) we subtracted the x's. :
'-v' ~_ In Line 4) we canceled the A's as —1, which on multiplication with | makes the
- itself negative.

* Let us start with an example:

- Here we have the function f(x) = 2x+3, written as a flow dxagram The Inverse Function g
Oﬂler way: 8o the inverse of: 2x+3 is: (y-3)/2 The inverse is usually shown by putting a little.

~ after the functlon name, like this: f'(y) We say 'f inverse of y" So, the inverse of f(x) = 2x+
mtten F(y) = (y-3)2

ﬂ also used y instead of x to show that we are using a different value.)

I|'|'

.‘@Q cool thing about the inverse is that it should give us back the original value:

YA
i B
.

Scanned by CamScanner



;i:m

The function:

Put "y" for "f(x)":

“Subtract 3 from both sides:
‘Divide both sides by 2:
Swap sides:

SQlUﬁ()n (put "f‘l(y)" for "X") .

works well for more difficult inverses.

ith an example:

i) = (y-3)2

Scanned by CamScanner



| would be nice to actually start with this since we know what we should get. This w
ce verification of the process.

t S get started. We’ll first replace J (x) with y.
y=3z-2

t, replace all x’s with y and all y s with .

x=3y-2
, solve for y.
x+2 -3y )
= E+2)=y
5,2 *
g "
lace y with / (x)
2
fl by =£+_
() 43

y the WSt:lts W,e“already took care of this in (he previous section. howe
ces 'so we'll do that here, | doesn’t matter which of the two tha
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nverse is then,

inally let’s verify and this time we'll use the other one just so we can say that we’ve gotien both
ywn somewhere in an example.
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X W e

2y-5

it i to make a
 the solution step. With this kind of problem it is very €asy to

x(2y-5)=y+4
2xy—ox=y+4
2xy—y=4+5x
(2x—-1)y=4+5x
445x

T

il So,

if we’ve done all of our work correctly the inverse should be,

/ 4+5x
.&3—1 ( X:l =

ex—1

Finally we’ll need to do the verification. This is also a fairly messy process and it doesn’t really
| matter which one we work with.

i (5oh) ()= W 17 0)]

‘8 :h[4+5x:]
| 2xiy
&

445x

o N te -
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NCE RELATIONS
‘of an Equivalence Relations

tion R on a set A is an cquivalence relation if and only if R is
reflexive,

2. symmeltric, and

3. tansitive

any equivalent relation must satisty all three (3) conditions

Recall the definition of an equivalence relation. In gencral, equivalence relation results when ke
sh to ‘identify’ two clements of a set that share a common attribute. The definition is motivated i
¢ observing that any process of ‘identification’ must behave somewhat like the cquality relation, and ;
equality relation satisfics the reflexive (x = x for all x), symmetric (x = y implies y = x), and 4
itive (x =y and y = z implies x = ) properties. ’

Let R be the relation on the set R real numbers defined by xRy iff x — y is an integer. Prove
is an equivalence relation on R,

: ! ‘Tﬁf
"‘ L

Example |

|
]
=
]

Reflexive:

| pose X € R. Then x — x = 0, which is an integer. Thus, x R x, T -2nd

~Symmetric:

€ Rand X Ry. Then x —y is an integer. Sincey - x = (X y), ¥~ x is also an
yRx.

|
Y il
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{0 have xRx’ and yRY’,

above, show that it is possible

graph G. Déﬁne a relation R on V by VBW

Let V be the set of vertices of a simple oo

, . i r
adjacent to w. Prove or disprove: R is an equivalence

PROPERTIES OF INTE RGERS

‘ Mathematical equations have their own manipulative P"“‘C‘P“"?' []hf[i:ji)iln:ilsgib)lzlof ol
~ properties help us to solve such equations. The properties ‘OT mtegers. "?‘F’ t ]_L, ‘ “ p . l . 5 N
- mathematical system and it will be used throughout the life. Hence. 1t's very c:..su Hll‘d. ) 0 u:. elstanc’lﬁ
- how to apply each of them to solve math problems. Basically. there are three properties which outliy
the backbone of mathematics. They are:
* Associative property
¢ Commutative property

Distributive property

b,
Ij’.w'n' Name Addition | Subtraction |Multiplication Division®
Rt . —_ e |
ﬁ | Closure ] a+belZ a-beZ axbsZ |iag+bez
: ILCommutative atb=b+a| a-b*b-a |axp-= bxag :—T)t_b:
[ Associative | (@ : bg : C) pAgmb) e (@xb)xc (@a+b)+c
e 0el | =ax(bxc) | 2ar(ha)]
Distributive | 8%(0*0) [ ax(b.c) |\ . B
Ko ~ =ab+ac =ab-ac th applicable | Not apphcablez

wherea, b, cc 2

= r— Al S b IS a non-zero lnteger

| . 8ire 3t
s and identities for addition and multiplication

! e oo “o‘f whole numbers are applicable
‘with the letter 7. ©15. 2ero and negative numbers which ¢

4

e o :
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er 11 is addmon or multlphcanon swappmg

Pppose, xx and yy are any two integers, then
XXy=yxy

raction (X Y #y —x)and division (x + y # y + x) are not commutative for integer;
nbers.

=6) # (-6) -4
2=5:2+10=1/5
ez 10
v 3: Associative property

ive property of addition and multiplication states that the way of arouping »f numbers dox w’
he result will be same. One can group numbers in any way but the answer will remain sa
is can be done irrespective of the order of terms. Let x. v and z be any three integers,

Z)=(xty)+z
) = (xxy) <z
H2(-3)) = 0=(1 +2) + (-3);
6= (1 x 2) x (-3)
of integers is not associative in nature i.e. x ~ (y = 7, # (x = y) —
B -2)—(3)=2; 1 -2-(-3)#( - 2)~(-3)
Distributive property

erty explaing the distributing ability of an operation over ancther math
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Xty D= (xEy)
XX(y+z)=xxy+xxz

Rt == x =0 + X
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3 %vﬂﬂ ﬁ)t“‘ + o‘n-—-‘. 2
3 aﬁt of terms in a deﬁned order with a rule f
denoted ‘a’ or *U’. :
contains only finite or a definite number of terms. Thus
cg. (a1,2,3,---,90 and (b)2,4,6,8,10
sequence on the other hand is an unending sequence i.c.a sequence w*hmé.
L known. e.g. (a) 1,2.3,4, - (b)-,-.-.2.4.6.8. 10

.

wn the next three terms of each of the following sequence:
{1’ 33 5: 7;
{1,3,6, 10

W
Bach term is +2, hence the next three terms are: 9, 11, and 13

Thus {1,3.5,7,9, 11, 13
10, 10+8, 1S +6 e
: 1§ 2& 28 i
o the next three terms are: 15, 21, and 28
Hence, the sequence is {1. 3, 6, 10, 15,21, and 28}
-12 -6, -3 —; it can be seen that cach term is divided by 2, ( + 2)

== —g = the next three terms are:
=3
16
_3}
16
4, 8, -,-,-, it can be seen that cach term is double the precedmg term _
=2 2+2=44+4=8 8+8=16 16+16 32

¢ {1,2,4,8,16,32, 64}
5
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(n—1)d
(5-D4=17 b
The n"term U, =a+ (n+m10d on) agen-le
=l+(n-1)4
=1+4n-4
- Un=4n_3
ii) 2,§=a=2,and d=3—2=32l
“Us=a+4d
L e =
=2+4(-3)=2-2=0
= U5=0.
The n™ term (general term), U, =a + (n - 1)d

2+040(-)
e 1
2 2

Gl :
5+5n factorise

=U,=5(5-n)
iii) B and d=3
Using Us=a+4d
i =5+4(3)=17
- The general term U, =5+ (n — 1)3

NN

=5+3n-3=3n+2
a=-3, d=2-(-3)=5
-1)d

+(15-1)(5)
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.........

ferm=20= a+9d =20  .........
g the two equations gives a = —7 and d=3
the first term is —7 and the common difference is 3
Using U,=a+ (n—1)d
= Uy =—7+(20-1)(3)=50
(iii) Uy,=a+(n-1)d

Up=77+Mm-1)(3)

=—-7+4+3n-3
= U,=3n+10.
The sequence is -7,-4,-1,2,5 ..o d=3,a=7

3) A 5™ term of an AP is thrice the 2" term. If the first term is 8. find

a) The common difference
b) The 11" term of the sequence
¢) The 10the term of the sequence.
Answers
a) a=8,d=2a= 16
b) U,=16,—18
¢) Up=16(10)-8= 152

The Sum of the first n terms of an AP

Consider the sum of the first n" term o
a. a+d, a+2d, at 3d,-,-,- a+(n d

Ssthe sum, S, =a -+ (a+d) +(
where [ is the last term
Reversing cquation (1), we have
S,=l+({-
Adding equation (1) and (2), we have
28n=2a+(n—1)d+2at (n-1)d,= -~ n times
- =2§,=(a+t (n—1d)n

& o (2a+(n-1)d)n

a+2d)+(@+3d) 1

d)+(l—2d)+(a+2d)+(a+d)+a.......,..

Sn=%[2a+(n—‘

Z .
s¢ the sum of the first n terms of an AP is

[the AP with the following terms;

.(2)




rst term and the common difference

of the 1* n terms
st

S,=>(n+1)
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4 18)=110.
The sum of 8" to 20" inclusive is given by
i’ Sy~ $1

But Sz =32‘-’ [2(2)+ (20 - )(@)] =420

And $=212(2) + (7 - DD~ 56
: + The sum from 8" to 20" terms inclusive is 420 —56 = 364.
4) Inan AP, the sum of the 2" and the s {erm is 25. If the sum of 5™ and 8
a) The first term and the common difference
b) thesum ofthe 1* 10 terms
c) the 20™ term of the sequence
Solution
Given that Uy + Us = 28
D524+ 5d =25 .ieininnenns (1) !
Also, given that Us + Uy = 43 o
e 11d=45......... ) :
Solving (1) and (2) simultaneously -
=>d=3anda=>35 y
Hence the first term is
b) Sw=12[2(5)+ (10— DA =185

¢) Uyp=at(n-— 1)d
~54 (20 -1) (3) = 62.
Exercise
1. The 3" term of a lincar sequence is 12 and the 12" term is 25. Find the
= a) First term
it b) Common difference
- © Thesum of the 1™ 30 terms.
: : d) Sum of the terms from 5" 10 15" inclusive.

™ term is 43, find

A

5 and the common difference is 3

start at G}.i¢24,000 and increased by annual incre
s the maximum salary reached? How many
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= a=1,d=] n=
2 =712 (1) + (12 - 1)1]
=6 (2+ 11) =78 milo tins, 4
4) During the 1* second of a journey, a car travels 2m. it travels 4m during the 2™ seconds, 6
during the 3" seconds and so on, Assuming that the distance continues to increase, find:
a) The distance travelled in the 10" second. k

~b) The total distance travelled up to time 10s, g
- Solution
lll

znd
l

4m

8) Ui=2+(10-1)2 =20m.
b) S1=T[2(2) +(10-1)2] = 110,

qual to the progycy of the numbey of terms and half 1
sum of the Sequence; 2, 4,6, 8 10
10) = 30

-..‘

s by GH¢60evey fyear. Ifin 20 years, he paid a total of ':‘

1\
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ant 2 is cdled the eomman nﬁm 4
2™ 3% ynd 4™ terms respectively of a s¢

*w-smtﬁel‘
Uy
Ef; Uz

of a geometric progression A
al if a GP has a first term a and a common ratio “r’, then the first 0 terms are

a, ar, ar’, ar , ar' ... ar™!

L/T

=

+ The n" term of a GP,

-

Examples
1) Find the 15" term of the GP 3.6, 12......... 20" ;
Solution > - ] o
= 6 12 o
a=3,r=z=—=2
6
But U, =ar"

= Ujis=32)"" =3)"
hose 4th term is 4 l: Hence the n

2) Find the common ratio of a GP whose first term is 36 and W
term of the sequence. &
Solution
a 1 -
Q= J6 U4 s — ,.
Z i |
= ar 4 v 8
e N
Buta‘aé = 361" —4 o
1 1
= 1‘ =—- =20 =7 E
8-1 Z .
U, =ar"

=136 (911-1 = 36 (%)nx 2

o)

3) Find the numbce
~ Solution

r of terms in the exponential sequence S

=
* ==

1 1
§ and U,,_ 243
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28

AlsoUs=135=2ar =135............

M+
ar® _ 135
arz2 5

Sr =27

S r=3,

b) U, = ar"™'

Put r = 3 into equation (1) = a=

= Ui, =2(3)™"'=2(3)" 103,936.6
The sum of the first n terms of GP

O | n

The first n term of a an exponential sequence are; a, ar, ar’, ar’, - , -, -, ar" 7 1
Let Sn represent the sum of the sequence. Thus
S,=atarar +ar'+................. +ar" ! (1) | 14 i
Multiply equation (1)by r, we have : B
1S, =ar+ar’ +ar+ar ............... I G ) o V_} a 4

Now, equation (1) —(2)
S,—-rS,=a—ar"

)
=>S,,=a(r r)’

Altemative]y, (2) - (1) we, have
1S,-S,=ar"+a

R ] )

=((r-1)S,=a(r"-r) 1
b .
&5 Sn=£u, r>]

=1

infinity is given by

-----------

B G byl

Sca'h'rzié. b CamScanner



term.
- b) Sumofthe first 10 terms
- Answers: 1= 3,and a=2
- . a) U= 39,366
b) Sio=159,048
4) Write down the sum of the first n terms of the following scries

. TR
i) T4ty
) 1246+3+15F e
iii) 1-%+%—%+---
Solution
i _a(r"-1)
l) Sn : r_}l
1(1—(—;) ) 3 nn
= a2 ()
. i0-G)) - N
B ke 3)) ;l
@ So=2(1)=":
5) If the sum of infinity of a GP is three {imes the first term. What is the common ratio? L
Solution :
R ::...l.— N = 3¢ :.i
§oo= But Sco =34 a

= 1—‘17 =3a Crosing multiply
= a=3a (] -r) dividing by
B - =1=3-3

- =23r=2

he sum of n terms of a certain serics is 4" — 1 for all values of n. Vind the first three terms and the

m and show that the series is a GP
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s '
T
'm a = 250, and common ratio, I = ¢
! =D S, = 2,482.48 tonnes.
o the formula S, = f(:—r_l—)—(;- , gives the sum, Se

2) A mother bought 100kg of rice for the family. Each weck, she cooked one-tenth of

left over from the previous week. Find the o .
i) total quantity of the rice cooked by the end of the 10" week.

i) How many weeks she took to cook 90kg of rice.
Solution h
1" Week 2" Week 3" Week 4™ Week

i l l !
10 9 -~ =

10 100
=a=10and r=—
. 10

S}

R
1%

= 65.132kg

_10-(1 -(%)9)

9
110

90

Logog (0.1) = 21.55 = 22 weeks.

Calculate the
a) value of the car after the third year,
e of the car after the fifth yeqr,
| b) 12,288

n o Ehﬂﬁgu%nces with the first 1
g.91 .1
.ﬂ 7‘ Sy

1 .
3 and common differenc
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rms of the sequence
na ‘i show that
(e 1
M=-Dx+ (-0 -2x
- Neglecting all terms in x* and higher powers of x.
b) Ifn =20 and x = 0.1, Calculate the approximate value of S, . s
14) In an experimental sequence, the 6™ term is 8 times the 3* term and the sum of the
terms is 192. Find the sum of the 5™ to 11" terms inclusive. '
15) The first, third and ninth terms of a lincar sequence are the first three terms of an
experimental sequence. If the seventh term of the linear sequence is 14, caleulate.
1) the 20" term of the linear sequence
ii) the sum of the first twelve terms of the exponential sequence
16) A man starts saving on 1* April. He saves 1pound the first day 2pounds the second day,
4pounds the third day, and so on. Doubling the amount every day. If' he managed to Keep on
saving under this system this system until the end of the month (30 days), how much would
he save? Give your answer in pounds, correct to three significance figures.

Answers
1y —16. (2) _]Z (3) (1) 9 terms. (ii) 22
(4) The sequence is 0,-3,-6,-9............... The 15" term is —42 .
(5) The numbers are 10, 11 and 12, (6) p, q and rare: 15, 17 and 19.
(7 2,5and 8 (8) 208 (9) 3969 (10) 1300 (B
(13)b) 504 (14) 2032 (15)1) 40 1) 531,440 (16) 10.700.000 (35gh)

RECURRENT RELATIONS
A second way of defining a sequence is 10 assign a value 1o the first (or the first few) term(s) and ‘
specify the nth term by a formula or equation that involves or more of the terms preceding it. |
Sequences defined this way are said to be defined recursively, and the rule of formula is called a ‘

recursive formula.
Example 1.Write down the first five terms of the following recursively defined sequence. |
Si=1 §;= Niy-1

The fist term is given as S; = 1. To get the second term, we use 1L = 2. the formular S,} =8y 10
get S, = 25, = 2.1 = 1. To get the third term, we usen = 3 in the value of the preceding teme. The

first five term are

( “Scandy CamScanner



5 atisfies the relation
1ce of number U, Uy, Us.oovvnvens i sz, S

+n?=nU, +2, for all integers n = 1. If Ui
: the values OfUz, Us and U,.
ﬁ) the expression for U, in terms of n
~ ¢) the sum of the first n terms of the sequence.

- Given U,+N°=nU,+2; n>1,U=2
;,a%enn—l Up+1=U,+2 butU=2 :
- =2Uk+1=2+2 e x4
¥ Uz 3 i

Whenn 2,U;=4=2U,+2 T

=>U; =2U, -2 but U, =3 ; i
=2U;=2(3)-2=4 T
Whenn=3, U, +9=3U; +2 ;
- Us=3U;-7butUs-, :
. PUs=3(4)-7=5
HenceU,, U,, U;, U, =2, 3,4, 5 |

...............

- bU=a+(mn-1)d 4}_.
JI =2+(n-1)=n+1 E
4 d) 8, -—(2a+(n—_ 1)d]—-(3+n) F

Example 4. A sequence of numbers U 1, Us, Us .,

.. Satisfi
31 =2) Ups = (@3n+ 1)U, forall isfies the relation

positive mtegers n.If U, =1, find
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T =
. ‘.' -

w s, ” ‘ 0 o i
ess 0.6 as an infinite geometric series and hence find the sun og" the series. &

O ¢q= 0

e e ! 6 £ 1 '
Hence 0.6 is an infinite series of first term ——as a common ratio 7o - o4t In
N : ) . )
: i) Since |r] <1, the sumto infinite nonnG n 9
-v — 6 [ Dt 3 rev -
\ BB 1 — 2 o
F RS p ™ - ) é 5 e o _._Lg_— —— e ' 2 Y ‘:
s ¥ 0 6 1~7 ]‘_i_ 3 " i o~ - C W Lo

'ﬂ,l o 10 J i
- . . » . ~ ) .
2) Express the recurring decimal 0.21 in the form ’{—) when p and @ are integers.

Solution
021212121 =0.21 + 0.0021 +0.000021 + 0.21 + 0.0021 0.0000021

U &
100 @ 1007 1003 b ” ’ "“!"
“This is an infinite series with first term == and common ratio r = - o9 i
: Hence 0. 21 “I—‘_l-’- -r:,«
pes 21 , : -
g™ A;__TQ.ET._—__'L <
s 7Y TS B o L
? - =100 i{ . y S o il V U ? ‘+" .'
R ] »ss 0.16 0.16 in the form =, where p and q are integers. el
. 3) Express = pandq g 1o 00Tk e
Solution et |
0.16 = 0.16666 ol 0} I ‘-uﬁ.i... '
=0.1-+0.06 +0.006 + 0.00006 + ...... > T /. ‘

- D4 .:.!&. o

------
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a GP, then b is called the geom}etric mean of

ic Menq = /(4 x 64

=v256 =16.
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n
b) Zk! e (I
k-1

1 '-A . . -
~ Express cach sum using summation notation

BN 2 22 3%+ ... O )1+ +8 0 s
iy 2 4 B 2n=l
, ~ Solution
T a) The sum 124 224 33+ ... + 92 has 9 terms, eachof the form k*. and strtat k=1 and
ends at k= 9.
9
S e 32 ... +9 = Z k? o ar
5 1,01, 1 b
‘. 3 B b) Thesum 1+ 2 + E i SO, ey has n times, cach of the form SR |
. 2

1‘ AN/ | 1
zn'—j 24/(=1 k=1
The index of summation need not always begins at | or end in n; for example, we could have

~ express the sum in expanded (b) as
n—a

1 i
=145t
k=0

ts the same sum as the one given in example above

1
wree ¥ —271—1

N

sequence and ¢ is real number, then:
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n(n+1)(2n+1)
6

v tnd = [M]

2

\ M > 1 F .
: ) mdsthe sum of each of the following sequence

&) 24
b) (kl.,_ 1 3
; ) €) ’;(kz— 7k + 2)
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20 20 5

=) 2 - ) ) =4 -

! 6 6
k= k=1 k=1

20(21)(41) s<6)(@1)‘ | = - ¥
= 4[2870 — 55] = 11,260. I g

Bice {a,} = (3n + 5} is an arithmetic sequence with[irst term a; = 8§ and the nth term &, = 3n
nd the sum S,, we use formula (4) above

13k +5) = ;:3[8 +5)] == (3n +13)




ro= [

6 : 6 N .I,F-
- LR converges or

1000
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W

T 3/
: and r=42>=-
.

<1 the series converges.

_ NB: The sequence in Example 4 is the same as the sequence put in

¢ i Example 2
! £ ,) 1l .

Since ' =75
3
a different way in

~ Self Assessment
" Determine whether the fol

. 1431 . I

). |
| s Pl ] W@
i, o

lowing scries converges oF di

1

i |

Verges | ; 'h
- g
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1+3n° 3
e converges or diverges.

l. I%‘ - >
whether the series Z

n=|

at if lima, # 0 , then the series is certainly divergent.

n—x

3n

ing value is not zero, it implies that Z l+3z

diverges.
= 1+n &

oo converges or diverges.
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e =
[ ¥
-

. .‘ 2 Tt -
i > @ | N 4N+ L
ine whether the series Zml (*”_3) converges or diverges.

20 +1

Since 5 #0, (l.e. lima, # 0), the series is divergent.

n—-rs

!

e

" s | 2 > . 1 .
mine whether the sequence 4’ converges or diverges.
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sy

« 1

n=l sl

—- converges or diverges.

whicb the sum (S,) of »n terms of the series tend to a definite numerical value
%uﬂed convergent series. That is a series converges when the llm S, gives y

.
-'I

(4 lunneﬂcal value. If S, does not tend to a definite value as » —» o0, the series is sand

'Y
'S
-y,

. . Determine whether the series 1+34+9+27+81+..
. .‘ ‘Solution:
14349+27+81+..=%" 3

n=0

- converges or diverges

fulThisisaGPofﬁrstterm,aﬂandr:3

ed by CamScanner



n=-l

10"

o Hence limS, = hm
, a- : NP 10"’
0
=0
Since the limitof S, is a definite numerical value. that is 0, the series converges.
3
: : 2 5n+3 : g
3. Determine whether L converges or diverges N
w2n—7
Solution:

S5n+3

J “ A Z:211—7 \

| Hence th -hmZ(sn F3)
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-0 'ﬁu ‘ 6
10700 1000 o

6

100 _ 1
r= =—
6
/ o 10
i Since ‘r‘ <1, then the series converges and has the sum;

¢s or diverges. Find the

il
- the serics given below converg
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term, =1 and » =3
 diverges

_22 2
Z:o : 3 9 27 .. converges and find the sum

2222
13" 379727

.
3
P

of first term, a = 2 (since n = 0)

his is a G

- 1 %_ '
gr . 3
1
’5 <1 , the series converges.

] ic ;equence in Example 4 is the same as the sequence put in a different way in
nple

r the following series converges or diverges
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’ n
enth " seri i
e series may cither converge or diverge. ;

The Nth Term Test for Divergence is an intrinsic test that can be uied *'
out restriction. i

mples:
Dt" g h h"' PO ml'l"3n2 .
e. Determine whether the series - converges of diverges.
n=\ '*‘ I7

Solution:

Recall that if lima, # 0 , then the series is certainly divergent.
n—%L

. 1 +3n° | n?
lim — |=lim
oo\ 14n n—®

=3 :
— = hat dwcr Cs.
Since the limiting value is not zero, it implics tha ZT ; 9

. whﬁfhﬁf the series Zrn-r ;- converges 0
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= qeri
J converges or diverges.

i
i

whether the series Z;(

n+n+3
2n’ +1

ie. lima, # O) , the series is divergent.

n—w

1

a =——

4n’ : i
converges or diverees. .
. & ges' 455D

Scanned by CamScanner



mine whether s 30
the series zl Tt converges or diverges.

. Determine whether Z —» converges or diverges.

=] Sn
a definite numerical value, as

cries in which the sum (S,) of n terms of the scries tend to 2
\imS, gives you @

h,;;.-mo is called convergent serics. That is a series converges when the

I _dgﬁmte numerical value. If S, does not tend to a definite value as n — o, the series is said 1o

13 ~ be divergent.

~ Examples:

4. Determine whether the series 1+3+9+27+81+.... converges of diverges

Solution:
1+3+9+27+81+....7 2,
3P of first term, @ :1 and r =3

3

This is a ¢
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TEANs s 0 :
it of S, is a definite numerical val ue, that is 0, the series converges

. —Sn+3
¢ whether E i converges or diverges
~ Oy —
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# (n+.1)!=n+1

cancels but the (n + 1). Last, it seems weird, but 0!

=1,

/e the series), a,. Define,

Lo, [

fe:] the series is absolutely convergent (and hence convergent).

if Z>1 the series is divergent.

L=l the series may be divergent, conditionally convergent, or absolutely
ergent.

ice that in the case of L =1 the ratio test is pretty much worthless and we would i

to a different test to determine the convergence of the series.

lute value bars in the definition of Z are absolutely required.

. If they are n
npossible for us to get the correct answer. 4 % 1

some examples,

.~ b b s e SR
b i b T
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N S » N . v . e
| Because this limitis less than 1, ¥ %" converges
¥ r ' »
=0 """

 another serics:

. | Uy -
L) § i 4 . b - £ ¥ ‘vvv’\ :t B ‘
h“ - -~ FO i o R L=
N7 il =T 0 i
-, n & | S b i
u a

s your guess —- docs it converge or diverge? Look at the limit of the ratio:

s your guess — docs it converge or diverge? Look at the limit of th
~in™! 2K+
- ‘b‘m : '0 . LLLM')
foxf ) 10

¢ ratio:
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w— | WO
converges or diverges

= :
Eﬂ; T sy

- example let’s be a little careful and make sure that we have everything dow 1

otly. Here are the series terms a,.

‘H-h}l- :
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convergence
ﬁﬂlowing series is convergent or divergent.

D™ A+ 141

l ) s

’m+l) +1 (=1)"] *e(n+1) iy ‘
- g «Sﬂ, as implied earlier we get £ =1 which means the ratio test is no good for determining the

L bonvergence of this series. We will need to resort to another test for this series. This series is
an alternating series and so let’s check the two conditions from that test. i

b, =hm =0

iy +1

bn+1

>
(n+1)" +1

are met and so by the Alternating Series Test this ser

tto you to verify this series is also absolutel

y convergent
is convergent or divergent.
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fr. - -" -|'._-' .
- . g

est this serics is divergent

ol

in the previous tw
SAW N IRE previous two examples if we get L = he r
convergent or divergent, 8 1 from the rat

‘ 18 9{1‘1; more th}ng that we should note about the ratio test before we move o
ction. The last series was a polynomial divided by a polynomial and we saw that
g = 1.fr_om the ratio test. This will always happen with rational expression involving
lynomials or polynomials under radicals. So, in the future it isn’t even worth it to try
test on these kinds of problems since we now know that we will get L=1.

" Also, in the second to last example we saw an example of an alternating serics in which the
- positive term was a rational expression involving polynomials and again we will always

“get L =1 in these cases.

out with a proof of the Ratio Test.

" Let’s close the section
Root Test M Tegt-
convergence that we're going to be looking at. As with

N S \ 1 SN O cro ‘ e H

" the Ratio Test, this test will also tel

‘simple convergence.

| 2%, Define,
|

=lim e, |
,ﬂOL a

that we have the series
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prob ﬁs other than computing the limit a
his problem.

i . oon _ o _
4 =lim —"—r =hm—-—=¥—w >1

x| P 3;1-02
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must factorize

ist be at least one degree less than the denominator (in t
10-2x is of degree 1 since the highest powered x term 1
3is of degree 2).

A%

of the numerator is equal to or higher than the degree of the denominator,
must be divided by the denominator until the remainder is of less degree than
minator. We will be looking at basically three types of partial fraction namely;

actions with linear factors, partial fractions with repeated factors and partial fractions
iratic factors.

- Distinct Linear Factors

case, the denominator O(x) can be factored |
distinct or different. The decomposition of Q(x)

‘(x+a,.)(x+a,)...(x+a”)
that no two @, 'S are equal, where i =1,2,.. .

4, + L A4 h
where A, A4,,... A ar -
X+ta, x+a ' 14y, A, are constants.

n

nto linear factors, such that, al] of them
is as follows;
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I I‘I_l_! ‘I L.

2y
N

the “comparison of coefficients™.

2x-3
(x* =1)(x+2)
Solution:

A
k-

<) l
e

If y= , express y in partial fractions.
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T |

7
2(x+1) 3(x+2)

"
{
—_
i

6(x—1)

c+a,) (x+a,) . (x+a,)".
xamples will help elaborate how this principle works.
+3 B &

= - R
2’ (x-2) (x-2 (x-2)
2+20x+6 A B C
pr—— = — o —— 5
142) B 42 (x+2)
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f‘l.l;"i K ..-'.
2" & W .

—_—
X=2 (x-2)

5x*—2x-19

Resolve ——MM —
TR

into partial fractions.

Solution:
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lich is the denominator can only be factored into que
)= +bx+c)+(x* +bx+c,)+..(x*+bx+c,).
ill help elaborate how this principle works.
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® 3+6x+4x 2.3 - - K
g Bxpress — 55— i tana Tl -
P 2 (2 + 3 : in partial {ractions. > : t..ﬂ \ L

| Solution: i @‘ 4@

7 - O0n

——

:
D - )Y
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the case of repeated quadratic factors, combine the methods use
ors and quadratic factors to resolve into partial fractions.

2x+3  Ax+B Cx+D

i (P +4)° 14 (x* +4)°

1 order to resolve an algebraic expression into partial fractions, the nume
degree less than the denominator. Howeyer when the de
ligher than the degree of the denominator, the n

r until the remainder is of less degree than the d

d in repeated

rator must be
gree of the numerator is
Imerator must be divided by the
enominator,

243x-10
2x-3

in partial fractions.
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A ;‘_‘nto partial fractions. |
x* —4x+3 2x* —4x+3
G-+ L T TG

5

—_—

(x+1)(x=-2)

2x" +3x+3

(x4+3)(x+2)x
2x
RS o
(& —8)
X+ T
S. (x-1y X
%‘;
i
4
69 |

|
|
|
/
. s Ew
I e ] S tiag
Pl . A
B
s | i
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' ~ Thus, 14243444 +k+(k+1)=

I(1+1)

i.i'iis true for S(1) (i.e. n=1), since 1 =

S(k) is also true (i.e. n = k)
k(k+1)
2

. ﬁ'S(k) is true, the S(&+1) is also true (i.e. If the statement is true for n =k, then it is
~ true forn=k+1)

el +243 444, .+ k=

k(k+1)
2

Thus, 14+2+3+4+..+k+(k+1)=

k(k+1)
)

+(k+1)

4 k(k+1)+2(k+1)
2
_(k+D(k+2)

3 2
_(k+D[(k+1)+1]
2
n(n+1)
2

P n .
ice for all natural numbers Z,=,l &

i , : = el
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6
é(k+ 1)(k +2)(2k +3)

=(k+1)(k427)(7 cayh- o

(k + DIk F1) 12k +1)+}}

2
6

3 1
Hence for all natural numbers Zr_lrz = —(—}’](y] +(2n+ 1)

- )

| b, y:

’. : n |

, ; ; :
3. Prove by mathematical induction that ZJJ = ZM (n+1)".
J=!

Solution:

Let P(n) be Z] "’i’l (n +1)%,

Wi
For n=1,

135 4
P(l)*l >~l (l+1) :,

Assummg the formula is truc forn=k

pk) = Z}k = Z
the P(

=1 istruc.

/c (k+1)

If P(k) is truc: je+1) is also (rue. Th
Pl

_ That is,

That is,
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B e *

B (R

" n_ 1 2
: 3 2
for all natural numbers ZJ = Z” (n+1)",
: J=l S S
mple 3 can be stated differently as prove by mathematical induction that

Y =Zln2(n+l)2.

4. Prove by mathematical induction that 1+3+5+...+(2n—1) = n’, for all natural
numbers.

Solution:
Let p(n) be the statement ;
- The statement is true for p(1) (i.e. n =1),, since 2(1)~1=1> = 1=1
Assume p(k) is also true (i.e. n = k)
Thus, 1+3+5+...+(2k-1)= k>
If p(k) is true, the p(k+1) is also true
Hence, 1+3+5+...+(2k - 1)+[2(k +1) - 1] = &

Implying that, I4+3+5+..+ k-1 +[2(k+1)-1] = k* +[2(k +1)-1]
=k’ +2k +1

| = (k +1)?
Hence the formula is true for all positive integral values of n by

!? ‘ :
i
B
|l
I

i
o U ol

induction.

NB: The above formula can be stated as «
sum of the first n odd numbers is equal to the nth square number”,

ssessment

prove by mathematical induction that the '
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